
Stat 534: formulae referenced in lecture, week 10:
Population modeling

Variance of λ̂:

• λ̂ is a non-linear function of the vital rates, i.e.
the elements of A.

• In real world, aij are estimated.

• Variability in âij propagates into uncertainty in λ

• Delta method: approximation to the variance of a
non-linear function

• One parameter: θ = f(β), e.g., θ = exp β

Var θ ≈
(
dθ

dβ

)2

Var β

• If derivative is a function of β, it’s evaluated at β̂

• Multiple parameters, applied to λ

Var λ ≈
∑
i,j

(
∂λ

∂aij

)2

Var aij+
∑

(i,j) 6=(k,l)

(
∂λ

∂aij

)(
∂λ

∂akl

)
Cov aijakl

• Don’t include (k, l) = (i, j) in the second sum
because those are the variance terms

• The partial derivatives are the sensitivity values!

Var λ ≈
∑
i,j

S2
ijVar aij +

∑
(i,j)6=(k,l)

SijSklCov aijakl

• Big simplification if you can assume all estimates
are independent, so all Covariances = 0

– Reality is that estimates are often correlated

– Song sparrows, f1 and f2 are a single esti-
mate, so correlation = 1
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Song sparrow example:

• The uncertainty in each estimate
Parameter s.e. Variance Sensitivity
f1 0.52 0.27 0.091
f2 0.52 0.27 0.057
φ0 0.060 0.0036 1.96
φ1 0.057 0.0032 0.26

• f1 and f2 are a single estimate, so correlation = 1
and covariance = 0.27

• φ0 and φ1 are independent and derived from dif-
ferent data than f1 and f2

– So all correlations involving φ0 or φ1 are 0,
so those covariances = 0

– Reminder:

Cor X, Y =
Cov X, Y√

Var X × Var Y

Cov X, Y = (Cor X, Y )
√

Var X × Var Y

• Putting the pieces together

– Only have to consider the non-zero matrix
elements

– The zeros in A are fixed at zero, so their Var
= 0

Var λ̂ = 0.0912 × 0.27

+0.0572 × 0.27

+1.962 × 0.0036

+0.262 × 0.0032

+0.091× 0.057× 0.27

+0.091× 0.057× 0.27

– Var λ̂ = 0.020, se λ̂ = 0.14

• Shortcut matrix computation of Var λ̂:

– Write S as a column vector of the non-zero
sensitivities

S
′
= [0.091, 0.057, 1.96, 0.26]
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– and V as the variance-covariance for the ma-
trix elements

V =


0.27 0.27 0 0
0.27 0.27 0 0

0 0 0.0036 0
0 0 0 0.0032


– Var λ̂ = S V S

Other choices of models:

• What if song sparrows live longer than 3 years?

• 5 years, λ = 1.028

A =


0 2.6 2.6 2.6 2.6

0.57 0 0 0 0
0 0.57 0 0 0
0 0 0.57 0 0
0 0 0 0.57 0


• 7 years, λ = 1.052

A =



0 2.6 2.6 2.6 2.6 2.6 2.6
0.57 0 0 0 0 0 0

0 0.57 0 0 0 0 0
0 0 0.57 0 0 0 0
0 0 0 0.57 0 0 0
0 0 0 0 0.57 0 0
0 0 0 0 0 0.57 0


• No fixed lifespan, λ = 1.06

A =

[
0 2.6

0.2 0.57

]
– Stage structured with Juvenile and Adult

– No longer a Leslie matrix

Stage structured population models

• Very common when size (continuous) determines
the demography
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• Northern Monkshood: size = stem basal diameter

• Seedlings always died, so demography driven by
survival and clonal reproduction

– Plant overwinters as rootstock,

– can produce two or more stems the next
spring

– eventually develops two separate root sys-
tems

• Simplified version of Monkshood stem demogra-
phy

– Classify plants into 3 size categories:
no stem, stem < 2mm, stem ≥ 2mm

• At a low elevation site: λ̂ = 0.939

Al =

 0.72 0.13 0.71
0.10 0.70 0.10
0 0.08 0.75


• At a high elevation site: λ̂ = 1.035

Ah =

 0.60 0.42 1.11
0.15 0.73 0.09
0 0.09 0.77



Growth and survival models:

• Very common stage-structured model

• 4 stages:
non-reproductive / small / medium / large

A =


a11 f2 f3 f4
a21 a22 0 0
0 a32 a33 0
0 0 a34 a44


• Interpretations of a’s:

a11 survive and don’t grow
a21 survive and grow
a22, a32 similar for small
a33, a43 similar for medium
a44 survival for large
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• More useful to reparameterize
φ1 P[ non repro survives]
g1 P [non repro grows | survived]
φ2 P[ small survives]
g2 P [small grows | survived]
φ3 P[ medium survives]
g3 P [medium grows | survived]
φ4 P[ large survives]

• The relationships:
a11 = φ1(1− g1) survive and don’t grow
a21 = φ1g1 survive and grow
a22 = φ2(1− g2) similar for small
a32 = φ2g2
a33 = φ3(1− g3) similar for medium
a43 = φ3g3
a44 = φ4 survival for large

• Know how to get sensitivities for matrix elements,
aij

• Really want sensitivity to φi or gi, e.g.

∂λ

∂g1
=
∑
ij

(
∂λ

∂aij

)(
∂aij
∂g1

)

• For this G-S model:

∂λ

∂g1
= φ1S21 − φ1S11

Life Table Response Experiment (LTRE):

• “Retrospective” analysis of demography

• Treat A as the response in an observational or
experimental study

• Observe differences in λ̂

– Ask, which demographic rates most responsi-
ble for the difference in λ̂?

– Rates most different between two conditions
is not sufficient

– also need large sensitivity for that rate
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• First order Taylor expansion of λ̂(Ah)− λ̂(Al)

λ̂(Ah)− λ̂(Al) ≈
∑
ij

Sij

(
a
(h)
ij − a

(l)
ij

)

• Which sensitivity matrix to use?

– Caswell suggests the average transition ma-
trix: A∗ = (Al + Ah)/2

Monkshood LTRE

•

A∗ =

 0.66 0.275 0.91
0.125 0.715 0.095
0 0.085 0.76


•

SA∗ =

 0.294 0.156 0.058
0.768 0.407 0.153
1.50 0.796 0.299


• The components

Element Interp. auij − alij ∆λij
a11 survival -0.12 -0.035
a12 fecundity 0.29 0.045
a13 fecundity 0.40 0.023
a21 growth 0.05 0.038
a22 survival 0.03 0.012
a23 clonal repro -0.01 -0.002
a31 0 0
a32 growth 0.01 0.008
a33 survival 0.02 0.060

• How good is the approximation?

– Calculate
∑

ij ∆λij = 0.095

– Observed auij − alij = 0.096

– Pretty good approximation!

– Expect less good if aij more different
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Summary of what we’ve seen so far:

• Short-term dynamics: use A and N 0 to project
N t

• Long-term dynamics:

– asympototic growth rate, λ

– stationary age/stage distribution, U

– reproductive values, V

– how quickly transient dies out, | λ1 | / | λ2 |

• Prospective analysis

– If you could change elements of A, what
should you focus on?

– What gives biggest impact on long-term
growth?

– Answered by S or E

• Retrospective analysis

– 2 or more treatments / conditions

– different transition matrices, diff. λ

– which elements contributed most to differ-
ence

Sources of estimates and se’s

• Mark-recapture → φ̂, se

• Observing nests, dens

– empirical means and se’s

• Tagging plants, watching transitions

– Binomial distributions, se =
√
p(1− p)/N

• Counting seeds, relating to seedling numbers

– Poisson distributions for seedling numbers

• Many other possibilities
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Bias-variance tradeoff:

• Structured populations with continuous “stage”

• Matrix models construct bins, estimate transition
prob. for each combination of bins

• Big Q: what’s the best set of bins?

• Bias vs. variance tradeoff

– Frequent statistical issue

– Many narrow bins: low bias, high variance

– Few wide bins: high bias, low variance

• Illustration: 100 plants

– If initial size = 0.4, what is distribution of
next year’s size?

– Wide bins: 0-0.5, 0.5-1, · · ·
P[0-0.5 | 0.4] = 0.91,
P[0.5-1 | 0.4] = 0.09

– Narrow bins: 0-0.1, 0.1-0.3, 0.3-0.5, · · ·
P[0.3-0.5 | 0.4] = 0.5,
P[0.5-0.75 | 0.4] = 0.35,
P[0.75-1 | 0.4] = 0.06

• What are the correct probabilities?

– Wide bins: 0-0.5, 0.5-1, · · ·
P[0-0.5 | 0.4] = 0.73,
P[0.5-1 | 0.4] = 0.27

– Narrow bins: 0-0.1, 0.1-0.3, 0.3-0.5, · · ·
P[0.1-0.3 | 0.4] = 0.026,
P[0.3-0.5 | 0.4] = 0.70,
P[0.5-0.75 | 0.4] = 0.26,
P[0.75-1 | 0.4] = 0.004

• s.e. of “same size bin”:

– Wide bins: 0.032, N = 79

– Narrow bins: 0.12, N = 17

• Problem is that probabilities for S=0.4 estimated
only from part of the data
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Integral Projection Models: General concept

• Vital rates are continuous functions of size, not
discrete bins

• Use a model to estimate size-specific probabilities

• All observations used to estimate all probabilities

• Easterling, Ellner and Dixon (2000) Ecology

• e.g. for growth (change in size):

P [St+1 = x] = g(St, θ)

• Need to determine the form of g():

– How do mean(St+1) and variance(St+1) de-
pend on St?

– What’s the appropriate distribution?

– and all parameters, θ

• Projecting forward 1 year

– Start # individuals in each size j,
how many individuals with size i?

– Matrix model:

N
(i)
t+1 =

∑
j

aijN
(j)
t

– IPM:

nt+1(s) =

∫
j

g(x, s, θ) nt(x) dx

Integral Projection Models: more details

• Notation:

– x: size of an individual at time t

– y: size of an individual at time t+ 1

– n(x, t): # individuals in size (y, y + δy) at
time t

• Need three functions, for time t→ t+ 1:
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– s(x): P[size x survives]

– g(x, y): P[surviving individual of size x grows
to size (y, y + δy)]

– f(x, y): E # newborns of size (y, y + δy) per
size x individual

– clonal reproduction, if any, goes into f()

• Combine into the “kernel”

k(x, y) = f(x, y) + s(X)g(x, y)

– k(x, y) is a 2D surface

– E # individuals next year in size (y, y + δ)
per individual in size x

• With all the pieces:

n(y, t+ 1) =

∫
x

k(x, y) n(x, t) dx

• This has a steady state when

n(y, t+ 1) =

∫
x

k(x, y) n(x, t) dx = λn(x, t)

– Need to find λ and n(y) numerically

“Solving” the IPM:

• Can evaluate any integral numerically

– Approximate the integral by a sum∫ u

x=l

f(x) dx ≈
u∑

x=l

f(x)∆x

∗ l and u are the smallest and largest fea-
sible sizes

– Choose m, the number of steps in the sum

– ∆x = (U − L)/m

– For each step, evaluate f(x) at the midpoint
of the step

• Applied to a population model:
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– Evaluate the kernel, k(x, y) on a grid of mid-
points (for x and y) ⇒ A

– The integral model is now approximated by

N t+1 = AN t

• use the eigenvalues and eigenvectors of A!

• Want m large (100, more?), so A is large

– ⇒ low bias

– ⇒ but also low variance

– because all data used to estimate each ele-
ment of A

• Does assume (critically) the correct model for the
kernel components

– But, we have data analysis tools for that

The really neat part of an IPM:

• I thought of the IPM as a way around the bias-
variance tradeoff

– Used 2D smoothing to estimate s(x), g(x, y), f(x, y)

• Others, Steve Ellner?, realized what you could do
with parametric models for s(x), g(x, y), f(x, y)

• Back to the monkshood LTRE data:

– I have data from multiple sites

– different annual temp and annual rainfall

– What if you want to extend LTRE model to
continuous covariates?

– Requires models for each matrix element

IPMs with covariates:

• Consider data from all sites together

• Start with a parametric model, e.g.:

– survival: logit s(x) = β0 + β1x
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• add environmental covariates

logit s(x) = β0 + β1x+ β2Temp+ β3x ∗ Temp

• Now have kernel functions for any covariate value(s)

• And hence can answer questions like:

– what does the demography of a rare plant
look like if the temperature increases by 2◦C
and precip increases by 5cm?

• Practical issues:

– need to estimate 3 components of the kernel

– growth function prob. requires modeling
both mean and variance

– Lots of bookkeeping

– Much more work than just counting #’s of
individuals in different groups

• R library IPMpack

– Was on CRAN, seems no longer maintained

– removed early 2020

– can get from the archive or sourceforge
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