Stat 534: formulae referenced in lecture, week 10: Population modeling

Variance of $\hat{\lambda}$:

- $\hat{\lambda}$ is a non-linear function of the vital rates, i.e. the elements of **A**.
- In real world, a_{ij} are estimated.
- Variability in \hat{a}_{ij} propagates into uncertainty in λ
- Delta method: approximation to the variance of a non-linear function
- One parameter: $\theta = f(\beta)$, e.g., $\theta = \exp \beta$

$$\operatorname{Var}\,\theta\approx\left(\frac{d\theta}{d\beta}\right)^{2}\operatorname{Var}\,\beta$$

- If derivative is a function of β , it's evaluated at $\hat{\beta}$
- Multiple parameters, applied to λ

$$\operatorname{Var} \lambda \approx \sum_{i,j} \left(\frac{\partial \lambda}{\partial a_{ij}} \right)^2 \operatorname{Var} a_{ij} + \sum_{(i,j) \neq (k,l)} \left(\frac{\partial \lambda}{\partial a_{ij}} \right) \left(\frac{\partial \lambda}{\partial a_{kl}} \right) \operatorname{Cov} a_{ij} a_{kl}$$

- Don't include (k, l) = (i, j) in the second sum because those are the variance terms
- The partial derivatives are the sensitivity values!

$$\operatorname{Var} \lambda \approx \sum_{i,j} S_{ij}^2 \operatorname{Var} a_{ij} + \sum_{(i,j) \neq (k,l)} S_{ij} S_{kl} \operatorname{Cov} a_{ij} a_{kl}$$

- Big simplification if you can assume all estimates are independent, so all Covariances = 0
 - Reality is that estimates are often correlated
 - Song sparrows, f_1 and f_2 are a single estimate, so correlation = 1

Song sparrow example:

•	The uncertai	nty in e	each estima	te
	Parameter	s.e.	Variance	Sensitivity
	f_1	0.52	0.27	0.091
	f_2	0.52	0.27	0.057
	ϕ_0	0.060	0.0036	1.96
	ϕ_1	0.057	0.0032	0.26

- f_1 and f_2 are a single estimate, so correlation = 1 and covariance = 0.27
- ϕ_0 and ϕ_1 are independent and derived from different data than f_1 and f_2
 - So all correlations involving ϕ_0 or ϕ_1 are 0, so those covariances = 0
 - Reminder:

$$\operatorname{Cor} X, Y = \frac{\operatorname{Cov} X, Y}{\sqrt{\operatorname{Var} X \times \operatorname{Var} Y}}$$

$$\operatorname{Cov} X, Y = (\operatorname{Cor} X, Y) \sqrt{\operatorname{Var} X \times \operatorname{Var} Y}$$

- Putting the pieces together
 - Only have to consider the non-zero matrix elements
 - The zeros in \boldsymbol{A} are fixed at zero, so their Var = 0

$$\begin{aligned} \text{Var} \ \hat{\lambda} &= 0.091^2 \times 0.27 \\ &\quad +0.057^2 \times 0.27 \\ &\quad +1.96^2 \times 0.0036 \\ &\quad +0.26^2 \times 0.0032 \\ &\quad +0.091 \times 0.057 \times 0.27 \\ &\quad +0.091 \times 0.057 \times 0.27 \end{aligned}$$

- Var $\hat{\lambda} = 0.020$, se $\hat{\lambda} = 0.14$

- Shortcut matrix computation of Var $\hat{\lambda}$:
 - Write \boldsymbol{S} as a column vector of the non-zero sensitivities

$$\boldsymbol{S}' = [0.091, 0.057, 1.96, 0.26]$$

– and V as the variance-covariance for the matrix elements

$$\boldsymbol{V} = \begin{bmatrix} 0.27 & 0.27 & 0 & 0 \\ 0.27 & 0.27 & 0 & 0 \\ 0 & 0 & 0.0036 & 0 \\ 0 & 0 & 0 & 0.0032 \end{bmatrix}$$
$$- \operatorname{Var} \hat{\lambda} = \boldsymbol{S} \boldsymbol{V} \boldsymbol{S}$$

Other choices of models:

- What if song sparrows live longer than 3 years?
- 5 years, $\lambda = 1.028$

	0	2.6	2.6	2.6	2.6
-	0.57	0	0	0	0
A =	0	0.57	0	0	0
	0	0	0.57	0	0
	0	0	0	0.57	0

• 7 years, $\lambda = 1.052$

$$\boldsymbol{A} = \begin{bmatrix} 0 & 2.6 & 2.6 & 2.6 & 2.6 & 2.6 & 2.6 \\ 0.57 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.57 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.57 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.57 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.57 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.57 & 0 & 0 \end{bmatrix}$$

• No fixed lifespan, $\lambda = 1.06$

$$\boldsymbol{A} = \left[\begin{array}{cc} 0 & 2.6\\ 0.2 & 0.57 \end{array} \right]$$

- Stage structured with Juvenile and Adult
- No longer a Leslie matrix

Stage structured population models

• Very common when size (continuous) determines the demography

- Northern Monkshood: size = stem basal diameter
- Seedlings always died, so demography driven by survival and clonal reproduction
 - Plant overwinters as rootstock,
 - can produce two or more stems the next spring
 - eventually develops two separate root systems
- Simplified version of Monkshood stem demography
 - − Classify plants into 3 size categories: no stem, stem < 2mm, stem $\ge 2mm$
- At a low elevation site: $\hat{\lambda} = 0.939$

	0.72	0.13	0.71
$oldsymbol{A}_l =$	0.10	0.70	0.10
	0	0.08	0.75

• At a high elevation site: $\hat{\lambda} = 1.035$

	0.60	0.42	1.11
$oldsymbol{A}_h =$	0.15	0.73	0.09
	0	0.09	0.77

Growth and survival models:

- Very common stage-structured model
- 4 stages:

non-reproductive / small / medium / large

Λ_	$\begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix}$	$\begin{array}{c} f_2 \\ a_{22} \end{array}$	f_3 0	$\begin{array}{c} f_4 \\ 0 \end{array}$
A =	0	a_{32}	a_{33}	0
	0	0	a_{34}	a_{44}

• Interpretations of *a*'s:

a_{11}	survive and don't grow
a_{21}	survive and grow
a_{22}, a_{32}	similar for small
a_{33}, a_{43}	similar for medium
a_{44}	survival for large

- More useful to reparameterize
 - $\phi_1 \quad P[\text{ non repro survives}]$
 - $g_1 \quad P \text{ [non repro grows | survived]}$
 - $\phi_2 \quad P[\text{ small survives}]$
 - $g_2 \quad P \text{ [small grows | survived]}$
 - $\phi_3 \quad P[\text{ medium survives}]$
 - $g_3 \quad P \text{ [medium grows | survived]}$
 - ϕ_4 P[large survives]
- The relationships:

 $\begin{array}{ll} a_{11} = \phi_1(1-g_1) & \text{survive and don't grow} \\ a_{21} = \phi_1 g_1 & \text{survive and grow} \\ a_{22} = \phi_2(1-g_2) & \text{similar for small} \\ a_{32} = \phi_2 g_2 \\ a_{33} = \phi_3(1-g_3) & \text{similar for medium} \\ a_{43} = \phi_3 g_3 \\ a_{44} = \phi_4 & \text{survival for large} \end{array}$

- Know how to get sensitivities for matrix elements, a_{ij}
- Really want sensitivity to ϕ_i or g_i , e.g.

$$\frac{\partial \lambda}{\partial g_1} = \sum_{ij} \left(\frac{\partial \lambda}{\partial a_{ij}} \right) \left(\frac{\partial a_{ij}}{\partial g_1} \right)$$

• For this G-S model:

$$\frac{\partial \lambda}{\partial g_1} = \phi_1 S_{21} - \phi_1 S_{11}$$

Life Table Response Experiment (LTRE):

- "Retrospective" analysis of demography
- Treat **A** as the response in an observational or experimental study
- Observe differences in $\hat{\lambda}$
 - Ask, which demographic rates most responsible for the difference in $\hat{\lambda}$?
 - Rates most different between two conditions is not sufficient
 - also need large sensitivity for that rate

• First order Taylor expansion of $\hat{\lambda}(\boldsymbol{A}_h) - \hat{\lambda}(\boldsymbol{A}_l)$

$$\hat{\lambda}(\boldsymbol{A}_h) - \hat{\lambda}(\boldsymbol{A}_l) \approx \sum_{ij} S_{ij} \left(a_{ij}^{(h)} - a_{ij}^{(l)} \right)$$

- Which sensitivity matrix to use?
 - Caswell suggests the average transition matrix: $A^* = (A_l + A_h)/2$

Monkshood LTRE

$$\boldsymbol{A}^* = \left[\begin{array}{cccc} 0.66 & 0.275 & 0.91 \\ 0.125 & 0.715 & 0.095 \\ 0 & 0.085 & 0.76 \end{array} \right]$$

•

	0.294	0.156	0.058
$oldsymbol{S}_{A^*} =$	0.768	0.407	0.153
	1.50	0.796	0.299

• The components

Element	Interp.	$a_{ij}^u - a_{ij}^l$	$\Delta \lambda_{ij}$
a_{11}	survival	-0.12	-0.035
a_{12}	fecundity	0.29	0.045
a_{13}	fecundity	0.40	0.023
a_{21}	growth	0.05	0.038
a_{22}	survival	0.03	0.012
a_{23}	clonal repro	-0.01	-0.002
a_{31}		0	0
a_{32}	growth	0.01	0.008
a_{33}	survival	0.02	0.060

- How good is the approximation?
 - Calculate $\sum_{ij} \Delta \lambda_{ij} = 0.095$
 - Observed $a_{ij}^u a_{ij}^l = 0.096$
 - Pretty good approximation!
 - Expect less good if a_{ij} more different

Summary of what we've seen so far:

- Short-term dynamics: use \boldsymbol{A} and \boldsymbol{N}_0 to project \boldsymbol{N}_t
- Long-term dynamics:
 - asymptotic growth rate, λ
 - stationary age/stage distribution, U
 - reproductive values, \boldsymbol{V}
 - how quickly transient dies out, $|\lambda^1| / |\lambda^2|$
- Prospective analysis
 - If you could change elements of A, what should you focus on?
 - What gives biggest impact on long-term growth?
 - Answered by \boldsymbol{S} or \boldsymbol{E}
- Retrospective analysis
 - 2 or more treatments / conditions
 - different transition matrices, diff. λ
 - which elements contributed most to difference

Sources of estimates and se's

- Mark-recapture $\rightarrow \hat{\phi}$, se
- Observing nests, dens
 - empirical means and se's
- Tagging plants, watching transitions
 - Binomial distributions, se = $\sqrt{p(1-p)/N}$
- Counting seeds, relating to seedling numbers
 - Poisson distributions for seedling numbers
- Many other possibilities

Bias-variance tradeoff:

- Structured populations with continuous "stage"
- Matrix models construct bins, estimate transition prob. for each combination of bins
- Big Q: what's the best set of bins?
- Bias vs. variance tradeoff
 - Frequent statistical issue
 - Many narrow bins: low bias, high variance
 - Few wide bins: high bias, low variance
- Illustration: 100 plants
 - If initial size = 0.4, what is distribution of next year's size?
 - Wide bins: 0-0.5, 0.5-1, \cdots P[0-0.5 | 0.4] = 0.91, P[0.5-1 | 0.4] = 0.09
 - Narrow bins: 0-0.1, 0.1-0.3, 0.3-0.5, \cdots P[0.3-0.5 | 0.4] = 0.5, P[0.5-0.75 | 0.4] = 0.35, P[0.75-1 | 0.4] = 0.06
- What are the correct probabilities?
 - Wide bins: 0-0.5, 0.5-1, \cdots P[0-0.5 | 0.4] = 0.73, P[0.5-1 | 0.4] = 0.27
 - Narrow bins: 0-0.1, 0.1-0.3, 0.3-0.5, \cdots P[0.1-0.3 | 0.4] = 0.026, P[0.3-0.5 | 0.4] = 0.70, P[0.5-0.75 | 0.4] = 0.26, P[0.75-1 | 0.4] = 0.004
- s.e. of "same size bin":
 - Wide bins: 0.032, N = 79
 - Narrow bins: 0.12, N = 17
- Problem is that probabilities for S=0.4 estimated only from part of the data

Integral Projection Models: General concept

- Vital rates are continuous functions of size, not discrete bins
- Use a model to estimate size-specific probabilities
- All observations used to estimate all probabilities
- Easterling, Ellner and Dixon (2000) Ecology
- e.g. for growth (change in size):

 $P[S_{t+1} = x] = g(S_t, \theta)$

- Need to determine the form of g():
 - How do mean (S_{t+1}) and variance (S_{t+1}) depend on S_t ?
 - What's the appropriate distribution?
 - and all parameters, θ
- Projecting forward 1 year
 - Start # individuals in each size j, how many individuals with size i?
 - Matrix model:

$$N_{t+1}^{(i)} = \sum_{j} a_{ij} N_t^{(j)}$$

- IPM:

$$n_{t+1}(s) = \int_{j} g(x, s, \theta) n_t(x) dx$$

Integral Projection Models: more details

- Notation:
 - -x: size of an individual at time t
 - -y: size of an individual at time t+1
 - n(x,t): # individuals in size $(y,y+\delta y)$ at time t
- Need three functions, for time $t \to t + 1$:

- s(x): P[size x survives]
- -g(x,y): P[surviving individual of size x grows to size $(y, y + \delta y)$]
- f(x, y): E # newborns of size $(y, y + \delta y)$ per size x individual
- clonal reproduction, if any, goes into f()
- Combine into the "kernel"

$$k(x,y) = f(x,y) + s(X)g(x,y)$$

- -k(x,y) is a 2D surface
- E # individuals next year in size $(y, y + \delta)$ per individual in size x
- With all the pieces:

$$n(y,t+1) = \int_x k(x,y) \ n(x,t) \ dx$$

• This has a steady state when

$$n(y,t+1) = \int_x k(x,y) \ n(x,t) \ dx = \lambda n(x,t)$$

- Need to find λ and n(y) numerically

"Solving" the IPM:

- Can evaluate any integral numerically
 - Approximate the integral by a sum

$$\int_{x=l}^{u} f(x) \, dx \approx \sum_{x=l}^{u} f(x) \Delta x$$

- * l and u are the smallest and largest feasible sizes
- Choose m, the number of steps in the sum

$$-\Delta x = (U - L)/m$$

- For each step, evaluate f(x) at the midpoint of the step
- Applied to a population model:

- Evaluate the kernel, k(x, y) on a grid of midpoints (for x and y) $\Rightarrow A$
- The integral model is now approximated by

$$N_{t+1} = AN_t$$

- use the eigenvalues and eigenvectors of A!
- Want m large (100, more?), so A is large

 $- \Rightarrow \text{low bias}$

- \Rightarrow but also low variance
- because all data used to estimate each element of \boldsymbol{A}
- Does assume (critically) the correct model for the kernel components
 - But, we have data analysis tools for that

The really neat part of an IPM:

- I thought of the IPM as a way around the biasvariance tradeoff
 - Used 2D smoothing to estimate s(x), g(x, y), f(x, y)
- Others, Steve Ellner?, realized what you could do with parametric models for s(x), g(x, y), f(x, y)
- Back to the monkshood LTRE data:
 - I have data from multiple sites
 - different annual temp and annual rainfall
 - What if you want to extend LTRE model to continuous covariates?
 - Requires models for each matrix element

IPMs with covariates:

- Consider data from all sites together
- Start with a parametric model, e.g.:
 - survival: logit $s(x) = \beta_0 + \beta_1 x$

• add environmental covariates

logit $s(x) = \beta_0 + \beta_1 x + \beta_2 Temp + \beta_3 x * Temp$

- Now have kernel functions for any covariate value(s)
- And hence can answer questions like:
 - what does the demography of a rare plant look like if the temperature increases by 2°C and precip increases by 5cm?
- Practical issues:
 - need to estimate 3 components of the kernel
 - growth function prob. requires modeling both mean and variance
 - Lots of bookkeeping
 - Much more work than just counting #'s of individuals in different groups
- R library IPMpack
 - Was on CRAN, seems no longer maintained
 - removed early 2020
 - can get from the archive or sourceforge